
Phase diagrams of random-field Ising systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 1525

(http://iopscience.iop.org/0305-4470/27/5/017)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 27 (1994) 1525-1532. Printed in the UK 

Phase diagrams of random-field king systems 

Michael R Swift?, Amos Maritant, Marek Cieplakts and Jayanth R Banavart 
t mpartment of Physics and Materials Research hbontory, The Pennsylvania Slate 
Universily, 104 Davey LaboraQy, University Park, PA 16802. USA 

Dipartime?to di Fisica, Universita di Padova, Padova, Italy 
Institute of physics, Polish Academy of Sciences, 02-668 Warsaw, Poland 

Received 27 October 1993 

Abstract We show that the random-field king model may be Nned to obtain two distinct 
scenarios of phase diagram topology. Explicit evidence for this is presented in a numerically 
emcl analysis in three dimensions and on a Bethe lattice, which dlows~ns to investigate the 
effects of lempenture, coordination number, and nsymmehy in the field distribution. 

1. Introduction 

The king model in a random magnetic field provides a convenient theoretical framework 
for exploring the effects of randomness on phase transitions [l]. On the experimental front, 
certain classes of randomly dilute antiferromagnets 121, the phase separation of binary fluids 
in porous media [3] and the liquid-vapour critical point in porous media [4] are afi believed 
to be realizations of the random-field king mode1 (WM) [5]. The XFIM has a Hamiltonian 

where the fields are usually distributed symmetrically around zero either in a Gaussian or a 
bimodal fashion. In both cases, the strength of the random-field distribution is characterized 
by the root mean square fluctuations, h~ = (h?)’”. 

In this paper, we show that one may tune the RFIM to obtain either of two distinct 
scenarios of phase transitions. We find explicit evidence for this in the RFIM in three 
dimensions, for which we determine the ground states exactly for systems size up to 323 
spins. Our results are supported by a numerically (and in one case analytic) exact analysis 
of the RFIM on a Bethe lattice which, surprisingly, yields a rich variety of phase diagram 
topologies. 

In the literature, the phase diagram of the m M  in the temperature T-hR plane is of two 
types, as shown in figures I(a) and (b). A mean-field analysis for a Gaussian distribution 
of fields [6], the bimodal model on a Bethe lattice with coordination number z = ~3-[7], 
renormalization group analysis [SI, some Monte Carlo simulations [9] and scaling theories 
of the RFIM [IO] all find or postulate that the transition from a disordered to an ordered 
phase remains continuous down to T = 0 (figure I(a)). On the other hand, high T series 
analysis [ l l ] ,  Monte Carlo simulations due to Young and Nauenberg 1121 and mean-field 
analysis for a bimodal distribution of fields [13] are suggestive of a  critical point in the 
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Figure 1. Phase diagrams in the T-hn plane showing the boundary between the panmagnetic 
md femmagnetic phases. In (a) the transition remains continous down to T = 0 while in (b)  
it becomes first order for sufficiently large hn. The asterisk denotes n uicriticd point. 

T-hR phase diagram (figure l(b)) with the transition becoming first order for sufficiently 
strong fields 1141. 

The nature of criticality is expected to be different in these two scenarios. In the former 
case, figure I(a), renormalization group ideas indicate that the transition is governed by a 
T = 0 fixed point: the basic competition at criticality is between the ordering tendency of 
the exchange interaction and the disordering effect of the field. Novel predictions of this 
scaling picture [lo] include a divergence of relaxation times as the transition is approached 
and a violation of the standard hyperscaling relation. In the second scenario, however, there 
is no scope for a T = 0 fixed point as the transition becomes first order at low T .  As a 
consequence, fluctuations due to both .the random field and the temperature are expected to 
play a role at criticality. 

On general thermodynamic grounds, tricritical points, such as the one in figure l(b), arise 
out of the confluence of three critical lines-three distinct thermodynamic phases become 
critical simultaneously. It is thus natural to view the RFIM in an extended parameter space. 
For this reason, we consider the king model with a generalized bimodal field distribution 

P(hd = pqhi  -ho) + (1 -p)6(hi f h l )  (2) 

where the symmetric case corresponds to p = $. The two parameters of the distribution, ho 
and h l ,  are taken to be independent variables-when ho # h l ,  odd moments are introduced 
into the field distribution. 

Our results are best described, first, within the framework of king spins sitting on 
a Bethe lattice. The fluctuations in the random field can be treated exactly within this 
formalism. This system was first studied by Bruinsma [7] for a coordination number z = 3 
and in the restricted space p = 4 and ho = h j . We have extended his work to investigate the 
effects of T, z and also asymmetry in the field distribution. Following [7], by introducing 
an effective field, x,, which acts on the uppermost site of an nth generation branch, all 
thermodynamic properties can be calculated exactly once the fixed-point distribution of the 
X ’ S ,  W,(x), has been determined. The hierarchical structure of the Bethe lattice gives rise 
to B functional recursion relation for W,,(x), 
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where 

is a T-dependent function (j3 = J / T ) .  
determined, the interior spin magnetization follows from the integrals 

Once the fixed point distribution has been 

m = SdxdyW,(x)W,(y)tanhB(x+g(y)) (4) 

over this distribution. 
Bruinsma 171 showed that there was no tricritical point for z = 3 and ho = h l .  Our 

extension of the phase diagram in the parameter space T-ho-hl is shown in figure 2(a). 
The T = 0 analysis of Bruinsma revealed Griffiths-type singularities [15] corresponding to 
the flipping of finite clusters of spins. These T = 0 singularities are not present at non-zero 
temperatures and have been omitted from the phase diagram. Figure Z(a) is an extension 
of figure l ( a )  viewed in the enlarged parameter space of equation (2). 

, 
T 

Figure 2. Phase diagrams, corresponding b f i p s  l(a) and I(b). in the space T-ho-hi. The 
hatched surfaces denote firstorder transitions where the magnetization varies discontinously 
while the broken curves are lines of critical points. In (a) there is a single critical line extending 
from the pure system critical point, 0'. to the zem-tempemure plane at Q. Figure 2(b) shows 
that the tricritical point, P, present in figure I(b), arises from the intersection of three critical 
lines UP', CP' and D'P'. At low T. there are three distinct phases sepanted by fust-order 
transitions. 

It is straightforward to show that for z = CO, a different scenario corresponding to 
figure l(b) is obtained. Inserting the fixed-point distribution W&) from equation (3) into 
equation (4) and integrating over x gives 

In the limit z + M, performing the integrals over the xi 's  leads to the replacement of the 
sum in equation (5)  by^ z g ( i ) ,  where i is the mean value of xi .  As g(xJ is the effective 
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interaction between two neighbouring sites, g(Z) = Jm, where m is the magnetization. 
Thus, equation (5) takes the form 
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m =/dhP(h) tanhg(m+h)  

where we have put J = l /z to ensure a well defined thermodynamic limit. This equation 
for m is the same as that obtained for an infinite range wM-a model amenable to exact 
solution [6,13]. The resulting phase diagram is shown in figure 2(b). A tricritical point is 
now present (the plane ho = hl corresponds to figure I(b)) and two new sheets of first- 
order transitions ending in lines of critikl points are obtained. Within this mean-field limit, 
the three phases giving rise to the tricritical point are readily seen in the T = 0 plane of 
figure 2(b): there are three lines of first-order transitions OP, DP and CP which meet at 
a triple point P. The line OP separates phases denoted by ++ and --, line CP separates 
phases ++ and +- and line DP sepaiates phases -- and +-. In the T = 0 limit the 
magnetization is +1 (-1) in the ++ (--) phases while it assumes an intermediate value 
in the third +- phase. The magnetization varies discontinuously on crossing the hatched 
surfaces in figure 2(b). 

In order to determine whether the tricritical point is a singular feature of the z + CO 

limit, we have studied numerically the recursion relation and magnetization for a Bethe 
lattice with z = 6. We follow a large (N = 10000) but finite sample of xs under iteration 
of equation (3) until an approximate fixed distribution is reached. The free energy per spin, 
for interior spins, is also evaluated in such a procedure to ensure that the system reaches a 
point of stable equilibrium. We map out the resulting phase diagram by looking for singular 
behaviour in m as ho, hl and T are varied. Figure 3 shows a typical magnetization curve 
as a function of ho in the large hl limit. The discontinuity in m is a first-order transition 
accompanied by strong hysteresis effects. 

We find a phase diagram in complete accord with the infinite z limit (figure 2(b)). Three 
sheets of first-order transitions separate three distinct phases ++, -- and +-. The exact 
symmetry present when ho = hl results in a tricritical point. The new sheets of transitions, 
absent for z = 3, are not restricted to field values for which (hi) = 0. The magnetization at 
the corresponding critical points is also non-zero, as a consequence of symmetry breaking 
due to the field imbalance. In the limit of one of the field components becoming large, 
ho or hl -+ CO, the critical T associated with the transitions saturates at a non-zero value 
(Tc f J % 2.2). 

The connection between these two seemingly distinct scenarios can be explored by 
investigating the effects of asymmetry in the field distribution. This can he achieved within 
the bimodal distribution, equation (2), by allowing p # f. In the case where a tricritical 
point is present for p = 4, any slight asymmetry destroys the delicate balance required for 
three phases to become critical simultaneously. The tricritical point is then replaced by a 
critical end pointi. However, in both cases (z = 3 and z = 6) we find that for p >> 4, the 
two scenarios in figures 2(a) and (b) are replaced by figure 4 (note the interchange of the 
ho and hl axes for ease of viewing). There is now a single sheet of first-order transitions 
bounded by a single critical line. The value of p which marks this change in the phase 
diagram topology is z-dependent. Thus, changes in either z or p have qualitative effects on 
the phase diagram topology. 

If there is no tdcritical point for p = 4. (figure 2(u)), there is no change in the phae  diagram topalogy far any 
slight asymmetry. 
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Fiyre 3. A typical magnetization curye as a function of hnfJ for P Bethe lattice with z = 6. 
A symmetric dishibution of fields is considered at a low t emper"  and in the large-hl limit: 
p = 0.5, T f J  = 1.0, hl f 3  = 10. A hysteresis loop, formed by fiat increasing (lower branch) 
then decreasing (upper branch) hnf 3 is indicative of a fint-order transition. The upper branch is 
a metastable solution while multiple solutions are found in the region around the vertical portion 
of the curve. The position of the transition, found from evaluation of the free energy, is also 
indicated (*), At higher temperatures, both the discontinuity in m and the associated hysteresis 
loop are absent. 

Figure 4. The schematic phase diagram far B Bethe lattice with z = 3 or z = 6 for p >> 4. A 
single sheet of first-order transitions is present (the hatched surface), bounded by a critical line 
O'D'. This line does not intersect the T = 0 plane. 

We now present evidence that the RFIM on a 3D Euclidean lattice also shows some of 
these same phase diagram topologies. The key feature distinguishing between these distinct 
scenarios is the existence, or absence, of transitions at low temperatures in the limit of 
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large ho or hl. We have used a polynomial time-flow algorithm [16], first implemented in 
the study of the RFJM by Ogielski [14], to determine exactly the behaviour of the system 
at T = 0 in the limit hl + 00. We obtain numerically the ground states of the REM on 
cubic lattices of linear size L,  ranging from L = 4 to 32, and calculate the disconnected 
susceptibility 
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as a function of ho and p for hl = 1OJ. Here, (. . .)c denotes the configurational averaging 
over different realizations of the fields (ranging from 10000 samples for the smaller systems 
up to a few hundred for L = 32). Finite-size scaling considerations imply 

XL = L*-*f((ho - h,)L'/Y) (8) 

with a first-order transition corresponding to i j  = -1. In equation (S), h, is the value of ho 
where a transition between the -- and +- phases may take place. 

Figure 5 is a log-log plot of the peak height, XL,,,,~, as a function of L for two different 
values of p .  In the symmetric case, XL," saturates for large L indicating the absence of 
any transition in the thermodynamic limit. However, for p = 0.8, XT-, , , ,~  obeys scaling 
with fi % -1, which is consistent with a first-order transition. These findings suggest that 
for p = 4, the resulting phase diagram is as in figure 2(a) while for large p it crosses over 
to figure 4, as in the Bethe lattice with coordination number z = 3. 

In L 

Figure 5. Size dependence of the peak height of the disconnected susceplibility for systems of 
up to 323 spins. The lower points (triangles) are for a symmetric p = 4 distribution showing 
that X L , ~ ~  saturates for large L, The upper points (squares) ore for an asymmetric distribution 
with p = 0.8. In this case, ,y~," is seen to obey scaling, equation (8). with ij =z -1. Except 
for the largest symmetric system, typical emr bars are smaller than the points plotted. 
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We finally provide a simple physical explanation for this surprising variation of random- 
field behaviour. The key point is whether or not the system can sustain transitions with 

predicted for large h ,  (figures 2(b) and 4) as ho is varied. In this limit, only the sites that 
experience a field ho, which are a fraction p of the lattice, are free to fluctuate. A necessary 
condition for this transition to exist is that these sites form a connected cluster, i.e. p > pc ,  
the percolation threshold [17]. Increasing~e or p favours the formation of an infinite cluster 
and allows for a first-order transition. In the case of a Gaussian distribution of random 
fields this percolation effect is no longer aperative-a phase diagram with only two distinct 
phases is obtained. 

Our calculations indicate that statistical correlations in the random-field distribution (eg. 
the connectedness of the sites having a given field value) can have a profound effect on 
the phase diagram topology and hence the nature of the random-field transitions [NI. A 
similar effect is to be expected in many experimental realizations of the RFIM. In the latter 
case, additional correlations introduced by the intrinsic structure of the system (eg. porous 
media?, surface preparation in dilute antiferromagnets [19]) may also play a role. 

~ broken Ising symmetry due to (hi) # 0. Consider the transitions at low temperatures 

~ 

~ 
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